CSE 451: Operating Systems
Winter 2022

Module 16
File Systems

Gary Kimura

Main Points

* Programming Interface

- s—Whatthe typical programmer sees are Files
and Directories

* Basic operations

¢ On-disk Structure
* First general design issues and then a look at

- T—

Microsoft’s FAT file system, Unix, and NTFS.
/ — —

* Journaling and Recovery

File System mission

* The concept of a file system is simple

* the implementation of the abstraction for secondary storage —
e abstractionZfiles

* logical organization of files into directories
e the directory hierarchy

* sharing of data between processes, people and machines
* access control, consistency, ... -

-onsisten

* The dlscu55|on on file systems often center around two
(Cb/ﬁcepts

<) {\There is th@e., how is the data persistently stored
N on seconda rage

{ There is the software component that manages the storage and
/L 1 ommunicates with the user to store and retrieve data (hopefully
W < | \) Wwithout any loss of information)
/

FiI_es
pp) o (fsz

» Afileis a collection of data with some properties
,5@, owner, last read/write time, protection ...

* Files may also have types
* understood by file system

+ dedlce,direCory, symballc 10 AN
e understood by other parts of OS or by runtime libraries

* executable, dll, source code, object code, text file, .

. Type can be encoded in the file’s name or contents
Windows encodes type in name (and contents)
e omy.ex t, .dll, .jpg, .mov, .mp3, ..
* Old Mac OS stored the name of the creating program along with the
file —
* Unix does both as well
* in content via magic numbers or initial characters (e.g., #!)

Programming Interface

* The usual APIs plus maybe a few surprises

 Open, close, read, write, ...
Ty e e
°@nd Directories, the object we play with

—

* Finding and Enumerating entries in a directory ©~
 Watching for changes<=
* How do we delete a file? —

« Renaming or moving files /——
enaming or moving

e Sequential access versus random access. Who remembers the
last access point? —

Shared opens and files locks

e —

Unix

* create(name)

* open(name, mode)

* read(fd, buf, len)

« write(fd, buf, len)

» sync(fd) —

* seek(fd, pos)

» close(fd)
unlink(name)

* rename(old, new)

Basic operations

Windows

* CreateFile(name, CREATE)
* CreateFile(name, OPEN)

* ReadFile(handle, ...)

» WriteFile(handle, ...)

* FlushFileBuffers(handle, ...)
 SetFilePointer(handle, ...)
 CloseHandle(handle, ...)

* DeleteFile(name)

» CopyFile(name)

* MoveFile(name)

File access methods

* Some file systems provide different access methods that

specify w e application will access data
e sequential access

* read bytes one at a time, in order

e irect access)<
. m access given a block/byte #

° r access

R} e fileis array of fixed- or variable-sized records
indexed access

* FS contains an index to a particular field of each record in a file

e apps can find a file based on value in that record (similar to DB)

°/ Why do we care about distinguishing sequential from direct

access?
 what might the FS do differently Bthese cases?

%fﬂﬁﬂqw (ﬁ w(

Directories

* Directories provide:
JIrector

* away for users to organize their files
* aconvenient file name space for both users and FS’ s

- Most file systems support multi-level directories
* naming hierarchies (c:\, c:\DocumentsAndSettings,
c:\DocumentsAndSettings\User, ...)

 Most file systems support the notion of current directory

e absolute names: fully-qualified starting from root of FS
* C:\> cd c:\Windows\System32

* relative names: specified with respect to current directory
e C:\> c:\Windows\System32 (absolute)
e C:\Windows\System32> cd Drivers
. (relative, equivalent to cd c: \Windows\System32\Drivers)

A_\ ‘(/ D)OC% E /f\J
Directofy internals =~~~ 2

* Adirectory is typically just a file that happens to contain

special metadata
* directory = list of (name of file, file attribute
e attributes include such things as:

* size, protection, location on disk, creation time, access time, ...
. the directory list can be unordered (effectively random)

@en you type “Is” or “dir fon” , the command sorts the results

foryou. —————
some file systems organize the directory file as a BTree, giving a
/ “natural” ordering S o
* What case to use for sort?

e What about international issues?

Back to some of the more unexpected functions

Finding and Enumerating entries in a directory
Watching for changes S /0/ < /f(%j

How do we delete a file? &—

Renaming or moving files. What if someone else has the file
open?

- (\c)(_\ ! o _
Shared opens and files locks /,//‘Z\/f P
* Tunnelling,)version control and files attrlbutes jL\é/ 2
= —* . _—

A deeper look into File Systems

e Design Constraints and options
* On-Disk structure

File System Design Constraints

* For small files:

— Small blocks for storage efficiency

— Files used together should be stored together

* For large files:
— iguous allocation for sequential access

— Efficient lookup for random access

 May not know at file creation

— Whether file will become small or large

File System Desig -]
n—/\w ce N N/EL o
W((A/@(j

* Data structures \ ~———

— Directories: file name -> file metadata

e Store directories as files
— File metadata: how to find file data blocks

— Free map: list of free disk blocks

° i P
Hov[\)/ d? V\;e organlz-f thesefdata structures: \f\ 0/ h/l/W
— evice has non-unirorm perrormance
/fﬁ‘j(L\/OL(A
IV L‘/ 4

Reliability

Desigh Challenges

We W o o

— How do we locate the blocks of a file?

Index granularity
~Index gran

— What block size do we use?
Free space

- — How do we find unused blocks on disk?

Locality
— How do we preserve spatial locality?

— What if machine crashes in middle of a file system op?

File System Design Options

FAT FFS NTFS
Index Linked list Tree Tree
structure (fixed, assym) (dynamic)
granularity block* block* extent
free space FAT array Bitmap Bitmap
allocation (fixed (file)
location)
Locality defragmentation Block groups Extents
+reserve Best fit
defrag
space

* Really a collection of one or more of logical blocks, commonly referred to as a cluster.

Microsoft’s File Allocation Table (FAT)

Introduced in DOS in the early 1980’s

Linked list index structure

 Simple, easy to implement

e Still widely used (e.g., thumb drives)
File table:

* Linear map of all blocks on disk
 Eachfile a linked list of blocks

Allocation granularity (cluster size)

> & FAT disk layout "
o L——) S — —
Tl ran [FAT 6T R, ;&ﬁéﬁ% KW:X:]

/gp/

@ ~
Ol e) l(——/—\\\ch&,/%

&
—] . / /
o 9 qw@m«/\\wgﬁpw
AT ka4 79%@3 ® |
' 0r@S

F
J

z)
=)

, T “ 0% =
FAT
Data Blocks
&
= fle9block3
C
fi lock
2 fi giglg‘ckjg ock 1
file 9 2
file 12 block 0
)
< file 12 block 1
R file 9 block 4

OWVWONOTLBAWN=OWVOSNOUAWN=0O

Pt ed d e) d e e d d

FAT)@ z -
%‘é%’ a con b | D l%/\
« Evolution: @/ (L
* Floppy disk an@ g K
* Hard drives a@h subdirectories ’B
* Larger drives agdm@

* Pros: -
— Easy to find free block

— Easy to append to a file
— Easy to delete a file

e (Cons:
— Small file access is slow

— Random access is very slow
—

— Fragmentation
* File blocks for a given file may be scattered
* Files in the same directory may be scattered

* Problem becomes worse as disk is used

The original Unix file system

Dennis Ritchie and Ken Thompson, Bell Labs, 1969

“UNIX rose from the ashes of a multi-organizational effort in

the early 1960s to develop a dependable timesharing

operating system” — Multics

Designed for a “workgroup” sharing a single system

Did its job exceedingly well

e Although it has been stretched in many directions and

made ugly in the process

A wonderful study in engineering tradeoffs

All disks are divided into five parts ...

*can boot the system by loading from this block
. ifiles boundaries of next 3 areas, and contains head of

ists of inodes and file blocks
«i-node area -
. ains descriptors (i-nodes) for each file on the disk; all
i-nodes are the same size; head of freelist is in the

ck
File contents are
» fixed-size blocks; head of freelist is in the superblock

=

* holds processes that have been swapped out of memory

So ...

* You can attach a disk to a dead system ...
* Bootitup..
* Find, create, and modify files ...
* because the superblock is at a fixed place, and it tells you
where the i-node area and file contents area are
* superblock also contains i-node number of root directory

The flat (i-node) file system

Each file is known by a number, which is the number of the
i-node

e seriously—-0,1, 2, 3, etc.!

« why is it called “flat”?

Files are created empty, and grow when extended through

writes ‘
AT v L \

R

(/P{F“”\B

The tree (directory, hierarchical) file system

* Adirectory is a flat file of fixed-size entries
* Each entry consists of an i-node number and a file name

/l]Z C b clc KGL(O

I-node number File name

152 q- >

8 |

216 my _file |

4 a\nother_file

93 oh_my_god

144 a_directory |

|

* |t's as simple as that!

The “block list” portion of the i-node (Unix Version 7)

* Points to blocks in the file contents area
 Must be able to represent very small and very large files. How?
 Each inode contains 13 block pointers
* first 10 are “direct pointers” (pointers to 512B blocks of file
data)
* then, single, double, and triple indirect pointers

—_—

> 0
0 / :
1] :. —
) : /
12 N —F
\ — ;

Protection

* CObjects:—individual files
. . (W)\Qv
* Principals: owner/groups/everyone
* Actions: read/write/execute i} C} s
— /

 This is pretty simple and rigid, but it has proven to be about
what we can handle!

File system consistency

Both i-nodes and file blocks are cached in memory

Tommand forces memory-resident disk information
to bewritten to disk

e system does a sync every few seconds
A crash or power failure between sync’s can leave an
inconsistent disk
You could reduce the frequency of problems by reducing

caching or via write-through, but performance would suffer
big-time

TVEYT S

Consistency of the Flat file system

* |s each block accounted for?

* Belongs to precisely one file or is on free list

 What to do if in multiple files? @
 Mark-and-sweep garbage collection of disk space

e Start with bitmap (one bit per block) of zeros

* For every inode, walk allocation tree setting bits

* Walk free list setting bits /6'>‘
* Bits that are one along the way? /Q 1
R

Bits that are zero at the end?

@ LT T

_L_su

V/> /\ﬂr

Consistency of the directory structure

Verify that directories form a tree
Start with vector of counters, one per inode, set to zero

Perform tree walk of directories, adjusting counters on every
name reference

At end, counters must equal link count

. WWOM?
S 5\

o L
Mv‘w . % V &
ﬂ VARNARRVARYAYZN

J\ = A

AN

Journaling File Systems

e Became popular ~2002, but date to early 80’ s
 There are several options that differ in their details
* Ntfs (Windows), Ext3 (Linux), ReiserFS (Linux), XFS (lIrix), JFS
mris)
* Basicidea
 update metadata, or all data, transactionally
* “all or nothing ”
* Failure atomicity
e if acrash occurs, you may lose a bit of work, but the disk will
be in a consistent state
 more precisely, you will be able to quickly get it to a
consistent state by using the transaction log/journal —
rather than scanning every disk block and checking sanity

conditions

Why are journaling file systems so popular?

In any file system buffering is necessary for performance
But suppose a crash occurs during a file creation:
* Allocate a free inode
* Point directory entry at the new inode
In general, after a crash the disk data structures may be in an
iInconsistent state
* metadata updated but data not
e data updated but metadata not
e either or both partially updated
fsck (i-check, d-check) are very slow
 must touch every block
e worse as disks get larger!

Where is the Data?

In the file systems we have seen already, the data is in two
places:
* Ondisk
* Inin-memory caches
The caches are crucial to performance, but also the source of
the potential “corruption on crash” problem
The basic idea of the solutign;
e Always Ieavef data in a consistent state
 Make updates persi oy writing them to a sequential
(chronological) journal partition/file
e At vyour leisure, push the updates (in order) to the home
copies and reclaim the journal space
* Or, make sure log is written before updates

 Log: an append-only file containing log r@;dsﬂ‘?"/ T C

e <startt> @ﬁ e A
e transactiont has begun lﬁ
e <tXxVv>

* transaction t has updated block x and its new value is v
* Can log block “diffs” instead of full blocks
 Can log operations instead of data (operations must

e idempotent and undoable)
. <CW>
e 1r

ansaction t has committed — updates will survive a
crash
 Committing involves writing the records — the home data
needn’t be updated at this time

If @ crash occurs

 Open the log and parse
* <start><commit>=> committed transactions
» <start>no <commit>=> uncommitted transactions
 Redo committed transactions
* Re-execute updates from all committed transactions
* Aside: note that update (write{’is idempotent: can be done
any positive number of times with the same result.
* Undo uncommitted transactions
* Undo updates from all uncommitted transactions
* Write “compensating log records” to avoid work in case
we crash during the undo phase

Managing the Log Space

* Acleaner thread walks the log in order, updating the home
locations (on disk, not the cache!) of updates in each
transaction

* Note that idempotence is important here — may crash
while cleaning is going on

 Once a transaction has been reflected to the home blocks, it
can be deleted from the log

Impact on performance

The log is a big contiguous write
» very efficient, but it IS another |/O
And you do fewer scattered synchronous writes
* very costly in terms of performance
So journaling file systems can actually improve performance
(but not in a busy system!)
As well as making recovery very efficient

e

* Developed for Windows NT in the early 1990’s
 Master File Table

— Flexible 1KB storage for metadata and data

* Extents
— Block pointers cover runs of blocks
— Similar approach in linux (ext4)

— File create can provide hint as to size of file

* Journalling for reliability
= dls TOF TETabl

* A basic underlying design principle: Everything on the disk is
represented as a file and accessible through the usual file
operations (read, write, etc.)

boo | NTFS disk layout

1= — 1\

. W I
U oV —
, A s /} -

F e s mAe 0

ﬁé”//(%(4?\“«—1%& \\\ kM/_ﬁ

%D%%m
ﬂ%/ /) //3/\) C |

S

NTFS Small File

Master File Table & (2 @%‘%@)

)

N\

s [O LS b3+@ —

MFT Record (small file)

75

ile Name

Data (resident)

(free)

A AR >
1 L7 - .
O(f QTFS Medium-Sized File

MFT Record
Ja— YR
E Std. Info. | File Name (g/mﬁ {fhonrasident) .

due
Iy wieg

NTFS Indirect Block

MFT

MFT Record
| (part 1) —— |

" | Std.Info. | Atrlist | File Name | Data (nonresident) |

Sermye » Sy

g TR

g TRy

MFT Record ! ;
lpart2)

l:l | Std. Info, | - Data (nonresident) N ‘ {frea) |

ey |eg

T
[wag Eeg

MFT

MFT Record
(small file)

| stnte | o Duta (residest)

MFT Record
(normal file)

" stdme | o | Data aneesieny

081

(bigiragmented file)

" |std inte. | Atrase

| Data (naneesidend)

[

MFT

MFT Recard
(huge/badly-fragmented file)

" 5. 1k, Al e fromrasigenl

....................

Data (narvesident)

Dt insreesident)

P 1 i

I

H——

P

P = B
i i
b : D :
P » i
|| s b
2 b

Data Insowesadent)

- 17

Data Inarvesident)

UI]

H
f
.
.
1

Dltl (nanvesident)

Data (narvesi dent)

R

i

'I___l Extent it part of attriute list

Data (nere psadent)

i‘[l 0

Dala (nare esadent)

U[I

0

Directories Are Files

PN

music 320
work 219
foo.ixt E71

Recursive Filename Lookup

File2 | bin 737
| usr 924
nome 156 -

*Flle 158 | mika 682
‘"home” | ada B18
tom 830

“-+Flle 830 | music 320
Thomeaftom” | work 2189
foo.txt 871

o Flle 871 | 1re i

-

“ThomeftomMoo tt™ | bross fou

Jmped

pwer the

iezy dog

Directory Layout

e Directory stored as a file

* Linear search to find filename (small directories)

Mame
Fie Momber

Rl

830

1586

File 830
“Thomeftom”
music | work foo.ixt
320 219 |FeeSpace] BT Free Space

B4 O gu3

Search for Hash (foo.txt) = 0x30

Large Directories: BArees

Root
Before | 240 | 510 | 730 | 980
Chold Poirer ! . ! I
Chid N Chid
Balore 121 | 180 | 240 780 | 841 | 930 | 980
ChibgPaister) 0 | : | | = | =
| - I . Leat
Hash
Estry Ponier
Hash Nember
Mame work | code bin tasgt
Fie Nsmaes 219 | 3 | 014 324

MNarms
Fie Nemer

Large Directories: Layout

File Containing Directory

music | work Root | Chid | Leaf | Leaf | Chid
| 320 | 219 X 1
Drectary Entrias IB+.lln Nodes

NTFS Features <?>

Journaling (logging) for quick recovery

Individual lossless file compression and sparse files

Symbolic links and hard links

Unicode Filenames with accompanying collation table

Random and sequential access

Able to extend (i.e., add disks) to a volume. <—
Fragmentation

“An obscure feature (?) to handle legacy apps that used short

8.3 (Eight Dot Three) names.

/

